Up

module Core_array

: sig
#
type 'a t = 'a array
#
val typerep_of_t : 'a Typerep_lib.Std.Typerep.t -> 'a t Typerep_lib.Std.Typerep.t
#
val typename_of_t : 'a Typerep_lib.Std.Typename.t -> 'a t Typerep_lib.Std.Typename.t
include Binary_searchable.S1 with type 'a t := 'a t
include Container.S1 with type 'a t := 'a t
#
val max_length : int

Maximum length of a normal array. The maximum length of a float array is max_length/2 on 32-bit machines and max_length on 64-bit machines.

#
external get : 'a t -> int -> 'a = "%array_safe_get"

Array.get a n returns the element number n of array a. The first element has number 0. The last element has number Array.length a - 1. You can also write a.(n) instead of Array.get a n.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to (Array.length a - 1).

#
external set : 'a t -> int -> 'a -> unit = "%array_safe_set"

Array.set a n x modifies array a in place, replacing element number n with x. You can also write a.(n) <- x instead of Array.set a n x.

Raise Invalid_argument "index out of bounds" if n is outside the range 0 to Array.length a - 1.

#
external unsafe_get : 'a t -> int -> 'a = "%array_unsafe_get"

Unsafe version of get. Can cause arbitrary behavior when used to for an out-of-bounds array access

#
external unsafe_set : 'a t -> int -> 'a -> unit = "%array_unsafe_set"

Unsafe version of set. Can cause arbitrary behavior when used to for an out-of-bounds array access

#
val create : len:int -> 'a -> 'a t

create ~len x creates an array of length len with the value x populated in each element

#
val init : int -> f:(int -> 'a) -> 'a t

init n ~f creates an array of length n where the ith element is initialized with f i (starting at zero)

#
val make_matrix : dimx:int -> dimy:int -> 'a -> 'a t t

Array.make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with first dimension dimx and second dimension dimy. All the elements of this new matrix are initially physically equal to e. The element (x,y) of a matrix m is accessed with the notation m.(x).(y).

Raise Invalid_argument if dimx or dimy is negative or greater than Sys.max_array_length. If the value of e is a floating-point number, then the maximum size is only Sys.max_array_length / 2.

#
val append : 'a t -> 'a t -> 'a t

Array.append v1 v2 returns a fresh array containing the concatenation of the arrays v1 and v2.

#
val concat : 'a t list -> 'a t

Same as Array.append, but concatenates a list of arrays.

#
val copy : 'a t -> 'a t

Array.copy a returns a copy of a, that is, a fresh array containing the same elements as a.

#
val fill : 'a t -> pos:int -> len:int -> 'a -> unit

Array.fill a ofs len x modifies the array a in place, storing x in elements number ofs to ofs + len - 1.

Raise Invalid_argument "Array.fill" if ofs and len do not designate a valid subarray of a.

include Blit.S1 with type 'a t := 'a t
#
module Int : sig
include sig
#
type 'a0 __pa_nonrec_0 = 'a0 t
#
type t = int __pa_nonrec_0
end
with type 'a0 __pa_nonrec_0 := 'a0 t
include Blit.S with type t := t
#
external unsafe_blit : src:t -> src_pos:int -> dst:t -> dst_pos:int -> len:int -> unit = "core_array_unsafe_int_blit" "noalloc"
#
val t_of_sexp : Sexplib.Sexp.t -> t
#
val sexp_of_t : t -> Sexplib.Sexp.t
#
val compare : t -> t -> int
#
val bin_t : t Bin_prot.Type_class.t
#
val bin_read_t : t Bin_prot.Read.reader
#
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader
#
val bin_reader_t : t Bin_prot.Type_class.reader
#
val bin_size_t : t Bin_prot.Size.sizer
#
val bin_write_t : t Bin_prot.Write.writer
#
val bin_writer_t : t Bin_prot.Type_class.writer
end
#
module Float : sig
include sig
#
type 'a0 __pa_nonrec_1 = 'a0 t
#
type t = float __pa_nonrec_1
end
with type 'a0 __pa_nonrec_1 := 'a0 t
include Blit.S with type t := t
#
external unsafe_blit : src:t -> src_pos:int -> dst:t -> dst_pos:int -> len:int -> unit = "core_array_unsafe_float_blit" "noalloc"
#
val t_of_sexp : Sexplib.Sexp.t -> t
#
val sexp_of_t : t -> Sexplib.Sexp.t
#
val compare : t -> t -> int
#
val bin_t : t Bin_prot.Type_class.t
#
val bin_read_t : t Bin_prot.Read.reader
#
val __bin_read_t__ : (int -> t) Bin_prot.Read.reader
#
val bin_reader_t : t Bin_prot.Type_class.reader
#
val bin_size_t : t Bin_prot.Size.sizer
#
val bin_write_t : t Bin_prot.Write.writer
#
val bin_writer_t : t Bin_prot.Type_class.writer
end
#
val of_list : 'a list -> 'a t

Array.of_list l returns a fresh array containing the elements of l.

#
val map : f:('a -> 'b) -> 'a t -> 'b t

Array.map ~f a applies function f to all the elements of a, and builds an array with the results returned by f: [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |].

#
val iteri : f:(int -> 'a -> unit) -> 'a t -> unit

Same as Array.iter, but the function is applied to the index of the element as first argument, and the element itself as second argument.

#
val mapi : f:(int -> 'a -> 'b) -> 'a t -> 'b t

Same as Array.map, but the function is applied to the index of the element as first argument, and the element itself as second argument.

#
val foldi : 'a t -> init:'b -> f:(int -> 'b -> 'a -> 'b) -> 'b
#
val fold_right : 'a t -> f:('a -> 'b -> 'b) -> init:'b -> 'b

Array.fold_right f a ~init computes f a.(0) (f a.(1) ( ... (f a.(n-1) init) ...)), where n is the length of the array a.

#
val sort : ?pos:int -> ?len:int -> 'a t -> cmp:('a -> 'a -> int) -> unit
#
val stable_sort : 'a t -> cmp:('a -> 'a -> int) -> unit
#
val is_sorted : 'a t -> cmp:('a -> 'a -> int) -> bool
#
val is_sorted_strictly : 'a t -> cmp:('a -> 'a -> int) -> bool
#
val concat_map : 'a t -> f:('a -> 'b array) -> 'b array
#
val partition_tf : 'a t -> f:('a -> bool) -> 'a t * 'a t
#
val partitioni_tf : 'a t -> f:(int -> 'a -> bool) -> 'a t * 'a t
#
val cartesian_product : 'a t -> 'b t -> ('a * 'b) t
#
val normalize : 'a t -> int -> int

normalize array index returns a new index into the array such that if index is less than zero, the returned index will "wrap around" -- i.e. array.(normalize array (-1)) returns the last element of the array.

#
val slice : 'a t -> int -> int -> 'a t

slice array start stop returns a fresh array including elements array.(start) through array.(stop-1) with the small tweak that the start and stop positions are normalized and a stop index of 0 means the same thing a stop index of Array.length array. In summary, it's mostly like the slicing in Python or Matlab. One difference is that a stop value of 0 here is like not specifying a stop value in Python.

#
val nget : 'a t -> int -> 'a

Array access with normalized index.

#
val nset : 'a t -> int -> 'a -> unit

Array modification with normalized index.

#
val filter_opt : 'a option t -> 'a t

filter_opt array returns a new array where None entries are omitted and Some x entries are replaced with x. Note that this changes the index at which elements will appear.

#
val filter_map : 'a t -> f:('a -> 'b option) -> 'b t

filter_map ~f array maps f over array and filters None out of the results.

#
val filter_mapi : 'a t -> f:(int -> 'a -> 'b option) -> 'b t

Same as filter_map but uses Array.mapi.

#
val iter2_exn : 'a t -> 'b t -> f:('a -> 'b -> unit) -> unit
#
val map2_exn : 'a t -> 'b t -> f:('a -> 'b -> 'c) -> 'c t
#
val fold2_exn : 'a t -> 'b t -> init:'c -> f:('c -> 'a -> 'b -> 'c) -> 'c
#
val for_all2_exn : 'a t -> 'b t -> f:('a -> 'b -> bool) -> bool

for_all2_exn t1 t2 ~f fails if length t1 <> length t2.

#
val filter : f:('a -> bool) -> 'a t -> 'a t

filter ~f array removes the elements for which f returns false.

#
val filteri : f:(int -> 'a -> bool) -> 'a t -> 'a t

Like filter except f also receives the index.

#
val swap : 'a t -> int -> int -> unit

swap arr i j swaps the value at index i with that at index j.

#
val rev_inplace : 'a t -> unit

rev_inplace t reverses t in place

#
val of_list_rev : 'a list -> 'a t

of_list_rev l converts from list then reverses in place

#
val of_list_map : 'a list -> f:('a -> 'b) -> 'b t

of_list_map l ~f is the same as of_list (List.map l ~f)

#
val of_list_rev_map : 'a list -> f:('a -> 'b) -> 'b t

of_list_rev_map l ~f is the same as rev_inplace (of_list_map l ~f)

#
val replace : 'a t -> int -> f:('a -> 'a) -> unit

replace t i ~f = t.(i) <- f (t.(i)).

#
val replace_all : 'a t -> f:('a -> 'a) -> unit

modifies an array in place -- ar.(i) will be set to f(ar.(i))

#
val find_exn : 'a t -> f:('a -> bool) -> 'a

find_exn f t returns the first a in t for which f t.(i) is true. It raises Not_found if there is no such a.

#
val findi : 'a t -> f:(int -> 'a -> bool) -> (int * 'a) option

findi t f returns the first index i of t for which f i t.(i) is true

#
val findi_exn : 'a t -> f:(int -> 'a -> bool) -> int * 'a

findi_exn t f returns the first index i of t for which f i t.(i) is true. It raises Not_found if there is no such element.

#
val find_consecutive_duplicate : 'a t -> equal:('a -> 'a -> bool) -> ('a * 'a) option

find_consecutive_duplicate t ~equal returns the first pair of consecutive elements (a1, a2) in t such that equal a1 a2. They are returned in the same order as they appear in t.

#
val reduce : 'a t -> f:('a -> 'a -> 'a) -> 'a option

reduce f [a1; ...; an] is Some (f (... (f (f a1 a2) a3) ...) an). Returns None on the empty array.

#
val reduce_exn : 'a t -> f:('a -> 'a -> 'a) -> 'a
#
val permute : ?random_state:Core_random.State.t -> 'a t -> unit

permute ?random_state t randomly permutes t in place.

permute side affects random_state by repeated calls to Random.State.int. If random_state is not supplied, permute uses Random.State.default.

#
val combine : 'a t -> 'b t -> ('a * 'b) t

combine ar combines two arrays to an array of pairs.

#
val split : ('a * 'b) t -> 'a t * 'b t

split ar splits an array of pairs into two arrays of single elements.

#
val sorted_copy : 'a t -> cmp:('a -> 'a -> int) -> 'a t

sorted_copy ar cmp returns a shallow copy of ar that is sorted. Similar to List.sort

#
val last : 'a t -> 'a
#
val empty : unit -> 'a t

empty () creates an empty array

#
val equal : 'a t -> 'a t -> equal:('a -> 'a -> bool) -> bool
#
val truncate : _ t -> len:int -> unit

truncate t ~len drops length t - len elements from the end of t, changing t so that length t = len afterwards. truncate raises if len <= 0 || len > length t.

#
module Infix : sig
#
val (<|>) : 'a t -> int * int -> 'a t
end
#
val to_sequence : 'a t -> 'a Sequence.t

to_sequence t converts t to a sequence. t is copied internally so that future modifications of t do not change the sequence.

#
val to_sequence_mutable : 'a t -> 'a Sequence.t

to_sequence_mutable t converts t to a sequence. t is shared with the sequence and modifications of t will result in modification of the sequence.

#
val t_of_sexp : (Sexplib.Sexp.t -> 'a) -> Sexplib.Sexp.t -> 'a t
#
val sexp_of_t : ('a -> Sexplib.Sexp.t) -> 'a t -> Sexplib.Sexp.t
#
val bin_t : 'a Bin_prot.Type_class.t -> 'a t Bin_prot.Type_class.t
#
val bin_read_t : 'a Bin_prot.Read.reader -> 'a t Bin_prot.Read.reader
#
val __bin_read_t__ : 'a Bin_prot.Read.reader -> (int -> 'a t) Bin_prot.Read.reader
#
val bin_reader_t : 'a Bin_prot.Type_class.reader -> 'a t Bin_prot.Type_class.reader
#
val bin_size_t : 'a Bin_prot.Size.sizer -> 'a t Bin_prot.Size.sizer
#
val bin_write_t : 'a Bin_prot.Write.writer -> 'a t Bin_prot.Write.writer
#
val bin_writer_t : 'a Bin_prot.Type_class.writer -> 'a t Bin_prot.Type_class.writer
end